Soluble Lead Flow Battery **Technology**

General Atomics & University of California, San Diego

David M. Keogh

March 2, 2011

Conventional Lead Acid Battery

Dominant Energy Storage Technology for 100+ yrs

Advantages

- Low cost
- Good efficiency
- Safety, Reliability

Conventional Lead Acid Battery

Current State-of-the Art

- \$180-200 /kWh
- 1000 deep cycles

Our / GRIDS Goal

- <\$100 /kWh
- >5000 deep cycles

Grid Scalable Lead Acid Battery

Innovations

- MSA-based electrolyte
- Carbon-based electrodes
 - Flow-battery design

Impact

- Cost Reduction
 - Grid Scalable
- Cycle-life Improvement

Soluble Lead Chemistry

Anode $Pb^{2+} + 2e^{-} \rightarrow Pb$ Cathode $Pb^{2+} + 2H_{2}O \rightarrow PbO_{2} + 4H^{+} + 2e^{-}$

Cell Potential 1.76V Energy Density 65Wh/kg, 95Wh/L

Unique Flow Battery Design

Design Features

- 1) Single Electrolyte
- 2) No membrane or separator required
- 3) Simplifies Balanceof-Plant

GA/UCSD Core Strengths

General Atomics

- Energy storage expertise (flywheels, SMES, thermalchemical)
- Chemistry Labs and Battery
 Test Facilities

GA Unmanned Underwater Vehicle

UCSD

- Laboratory for Energy Storage & Conversion (Prof. Shirley Meng)
- Materials Synthesis, Modeling & Computation, Characterization

Alpha-PbO₂

Project Overview / Status

Single Cell Testing

Flow Battery Prototype

20kW Proof-of-Concept

24

0 6 12 18

Timeline (Months)

30

